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Abstract
For the example of the logarithmic triplet theory at c = −2, the chiral vacuum
torus amplitudes are analysed. It is found that the space of these torus
amplitudes is spanned by the characters of the irreducible representations,
as well as a function that can be associated with the logarithmic extension
of the vacuum representation. A few implications and generalizations of this
result are discussed.
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Mathematics Subject Classification: 81T40, 81R10, 17B69

1. Introduction

During the last 20 years, much has been understood about the structure of rational conformal
field theories. Rational conformal field theories are characterized by the property that they have
only finitely many irreducible highest weight representations of the chiral algebra (or vertex
operator algebra), and that every highest weight representation is completely decomposable
into irreducible representations. The structure of these theories is well understood: in
particular, the characters of the irreducible representations transform into one another under
modular transformations [1] (see also [2]), and the modular S-matrix determines the fusion
rules via the Verlinde formula [3]. (A general proof for this has only recently been given
in [4].)

On the other hand, it is clear that rational conformal field theories are rather special,
and it is therefore important to understand the structure of more general classes of conformal
field theories. One such class is the (rational) logarithmic theories that possess only finitely
many indecomposable representations, but for which not all highest weight representations
are completely decomposable. The name ‘logarithmic’ comes from the fact that their chiral
correlation functions typically have logarithmic branch cuts. The first example of a (non-
rational) logarithmic conformal field theory was found in [5] (see also [6]), and the first rational
example (that shall also concern us in this paper) was constructed in [7]; for some recent reviews
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see [8–10]. From a physics point of view, logarithmic conformal field theories appear naturally
in various models of statistical physics, for example in the theory of (multi)critical polymers
[11–13], percolation [14, 15], two-dimensional turbulence [16–18], the quantum Hall effect
[19] and various critical (disordered) models [20–27]. There have also been applications in
Seiberg–Witten models [28] and in string theory, in particular in the context of D-brane recoil
[29–32], and in pp-wave backgrounds [33]. Logarithmic vertex operator algebras have finally
attracted some attention recently in mathematics [34–38]. Most examples that have been
studied concern the c = −2 model (that shall also mainly concern us here), but logarithmic
conformal field theories have also arisen in other contexts, see for example [39–42].

As we have mentioned above, the characters of the irreducible representations of a rational
conformal field theory close under the action of the modular group. This can be proven by
showing that they span the space of (chiral) vacuum torus amplitudes which is modular
invariant on general grounds [1]. On the other hand, for logarithmic conformal field theories
it has been known for some time that the characters of the irreducible representations do
not, by themselves, form a representation of the modular group [12, 43]. However, even for
logarithmic theories the vacuum torus amplitudes should still be closed under the action of
the modular group [36]. In order to see explicitly how this fits together, we study in this
paper the space of vacuum torus amplitudes for the example of the triplet theory at c = −2
[44]. We explain how to derive the modular differential equation that characterizes these
amplitudes. (In the case of rational conformal field theories, such differential equations were
first considered in [45].) As we shall see, the characters of the irreducible representation only
account for a subspace of codimension 1. Furthermore, we show that the remaining solution
of the differential equation can be taken to agree with the ‘logarithmic character’ that can be
formally associated with the indecomposable extension of the vacuum representation [43];
this clarifies its interpretation as a genuine vacuum torus amplitude (despite the fact that it is
not actually a character). We also observe that this association of a vacuum torus amplitude
with a logarithmic representation is not canonical. In particular, the indecomposable highest
weight representations therefore do not give rise to a canonical basis for the space of these
torus amplitudes. This explains why Verlinde’s formula (that presupposes such a basis) cannot
describe the fusion rules of the triplet theory correctly [7].

The modular properties of a logarithmic conformal field theory have played an important
role in various applications of logarithmic conformal field theory, in particular in the analysis
of the boundary theory (for some work in this direction see [46–50]) and the fusion rules
[43, 51].

The paper is organized as follows. In section 2, we review briefly the main results of
Zhu [1] that were generalized to the logarithmic case in [36]. In section 3, we recall the main
properties of the c = −2 triplet theory. Putting these results together we derive, in section 4, the
modular differential equation that characterizes the vacuum torus amplitudes. The complete
space of solutions is constructed in section 5. In section 6, we explain how the analysis of the
modular differential equation can be generalized to arbitrary rational logarithmic conformal
field theories. Finally, we sketch in section 7 how the analysis works for the other triplet
theories, giving explicit details for the c = −7 example.

2. Zhu’s argument

In the following, we shall consider conformal field theories (or vertex operator algebras) that
satisfy the C2 condition, but we shall not assume that they define rational conformal field
theories. As is common in the mathematical literature, we call a conformal field theory
rational if (i) it possesses only finitely many irreducible highest weight representations, each
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of which has finite-dimensional L0 eigenspaces, and (ii) every highest weight representation
can be decomposed into a direct sum of irreducible highest weight representations. The C2

condition states that the quotient space H0/C2(H0) is finite dimensional, where H0 is the
vacuum representation of the conformal field theory and C2(H0) is the space spanned by the
states

V−h(ψ)−1(ψ)χ, for ψ, χ ∈ H0. (1)

The C2 condition implies that Zhu’s algebra A(H0) is finite dimensional, and therefore that
the conformal field theory has only finitely many irreducible highest weight representations
(see also [52] for an introduction to these matters). However, it does not imply that the
theory is rational in the above sense. Indeed, the example we shall mainly consider in this
paper, the triplet algebra at c = −2 [44], satisfies the C2 condition [53], yet is not rational
since it possesses indecomposable representations [7]. It is natural to conjecture3 that rational
logarithmic conformal field theories are characterized by the condition that they are C2-cofinite,
but that Zhu’s algebra is not semisimple. The results of this paper are certainly in agreement
with this idea.

Let us briefly summarize the key results of Zhu [1] that were extended by Miyamoto [36]
to theories that satisfy the C2 condition but are not rational in the above sense. If the conformal
field theory satisfies the C2 condition, then every highest weight representation gives rise to a
torus amplitude; in particular, the vacuum torus amplitude is just given by the usual character

χHj
(τ ) = TrHj

(
qL0− c

24
)
, q = e2π iτ , (2)

which converges absolutely for 0 < |q| < 1. Furthermore, the space of torus amplitudes
is finite dimensional, and it carries a representation of SL(2, Z) [1, 36]. As is explained in
[1, 36], if the conformal field theory satisfies the C2 condition then there exists a positive
integer s so that every vacuum torus amplitude T (q) satisfies[(

q
d

dq

)s

+
s−1∑
r=0

hr(q)

(
q

d

dq

)r
]

T (q) = 0. (3)

Here, hr(q) are polynomials in the Eisenstein series E2(q), E4(q) and E6(q); we choose the
convention that the Eisenstein series are defined by

Ek(q) = 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn, (4)

σk(n) =
∑
d|n

dk, (5)

where Bk is the kth Bernoulli number. Thus, the q-expansion of the Eisenstein series
reads E2 = 1 − 24q − 72q2 − 96q3 − · · · , E4 = 1 + 240q + 2160q2 + 6720q3 + · · · and
E6 = 1 − 504q − 16 632q2 − 122 976q3 − · · · in our normalization.

For the following it is important (see lemma 5.3.2 of [1]) that the functions hr have the
property that

(
L − c

24

)s

+
s−1∑
r=0

hr(0)
(
L − c

24

)r

= 0 (6)

in Zhu’s algebra A(H0). This reflects the fact that for q → 0, only the highest weight states
contribute to the vacuum torus amplitudes, and that they must therefore satisfy the constraints

3 A related conjecture was originally made by one of us (MRG) in collaboration with Peter Goddard—see [9].
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of Zhu’s algebra. As we shall argue below, the differential equation (3) can be identified with
the modular differential equation that was first considered in [45].

If the conformal field theory is in addition rational in the above sense, Zhu showed that
the space of torus amplitudes is spanned by the characters of the irreducible representations.
However, as already pointed out in [36], this is no longer the case if the theory is not rational.
Indeed, we shall see this very explicitly for the case of the triplet algebra in the following.

3. The triplet theory

Let us briefly recall some of the properties of the triplet theory [7, 12, 13, 44]. The chiral
algebra for this conformal field theory is generated by the Virasoro modes Ln and the modes
of a triplet of weight 3 fields Wa

n . The commutation relations are

[Lm,Ln] = (m − n)Lm+n − 1
6m(m2 − 1)δm+n,[

Lm,Wa
n

] = (2m − n)Wa
m+n,[

Wa
m,Wb

n

] = gab
(
2(m − n)�m+n + 1

20 (m − n)(2m2 + 2n2 − mn − 8)Lm+n

− 1
120m(m2 − 1)(m2 − 4)δm+n

)
+ f ab

c

(
5

14 (2m2 + 2n2 − 3mn − 4)Wc
m+n + 12

5 V c
m+n

)
,

where � = :L2: − 3/10∂2L and V a = :LWa: − 3/14∂2Wa are quasiprimary normal ordered
fields. gab and f ab

c are the metric and structure constants of su(2). In an orthonormal basis,
we have gab = δab, f ab

c = iεabc.
The triplet algebra (at c = −2) is only associative, because certain states in the vacuum

representation (which would generically violate associativity) are null. The relevant null
vectors are

Na = (
2L−3W

a
−3 − 4

3L−2W
a
−4 + Wa

−6

)

, (7)

Nab = Wa
−3W

b
−3
 − gab

(
8
9L3

−2 + 19
36L2

−3 + 14
9 L−4L−2 − 16

9 L−6
)



− f ab
c

(−2L−2W
c
−4 + 5

4Wc
−6

)

. (8)

We shall only be interested in representations which respect these relations, and for which the
spectrum of L0 is bounded from below. Evaluating the constraint coming from (8), we find
(see [7] for more details)(

Wa
0 Wb

0 − gab 1
9L2

0(8L0 + 1) − f ab
c

1
5 (6L0 − 1)Wc

0

)
ψ = 0, (9)

where ψ is any highest weight state, while the relation coming from the zero mode of (7) is
satisfied identically. Furthermore, the constraint from Wa

1 Nbc
−1, together with (9), implies that

Wa
0 (8L0 − 3)(L0 − 1)ψ = 0. Multiplying with Wa

0 and using (9) again, this implies that

0 = L2
0(8L0 + 1)(8L0 − 3)(L0 − 1)ψ. (10)

For irreducible representations, L0 has to take a fixed value h on the highest weight states, and
(10) then implies that h has to be either h = 0,−1/8, 3/8 or h = 1. However, it also follows
from (10) that a logarithmic highest weight representation is allowed since we only have to
have that L2

0 = 0 but not necessarily that L0 = 0. Thus, in particular, a two-dimensional space
of highest weight states with relations

L0ω = 
, L0
 = 0 (11)
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satisfies (10). This highest weight space gives rise to the ‘logarithmic’ (indecomposable)
representation R0 (see [7] for more details). (The other indecomposable representation R1 of
[7] is not highest weight in the usual sense.)

It follows from the above analysis (and a similar analysis for the Wa modes—see for
example [7]) that the triplet theory has only finitely many indecomposable highest weight
representations. This suggests that it satisfies the C2 condition, and in fact this has been
proven recently [54] (see also [53]). Indeed, the space H0/C2(H0) has dimension 11, and it
can be taken to be spanned by the vectors

Ls
−2
, where s = 0, 1, 2, 3, 4,

Ls
−2W

a
−3
, where s = 0, 1 and a ∈ adj(su(2)).

(12)

As was already explained by Zhu [1], the dimension of this quotient space gives an upper
bound on the dimension of Zhu’s algebra, which is thus at most 11 dimensional. On the other
hand, it also follows from the analysis of Zhu [1] that each irreducible representation whose
space of ground states has dimension d contributes d2 states to Zhu’s algebra. For the triplet
algebra, the irreducible representations with highest weights h = −1/8 and h = 0 are singlet
representations, while the irreducible representations with h = 3/8 and h = 1 are doublets.
These irreducible representations therefore account for a (12 + 12 + 22 + 22 = 10)-dimensional
(sub)space of Zhu’s algebra. Since we have one additional highest weight representation—the
logarithmic extension of the vacuum representation—we expect that Zhu’s algebra is precisely
11 dimensional, and that the remaining state accounts for this logarithmic extension. We shall
see below how this counting is in fact mirrored by our analysis of the vacuum torus amplitudes.

4. The modular differential equation

The above calculation leading to (10) implies that in Zhu’s algebra we have the relation

L2
0(8L0 + 1)(8L0 − 3)(L0 − 1) = 0, (13)

where L0 denotes the operator corresponding to the stress energy tensor, and the product is
to be understood as the product in Zhu’s algebra (see for example [52] for an explanation of
this construction). In fact, such a relation had to hold in Zhu’s algebra, given the structure
of the homogeneous quotient space H0/C2(H0) in (12): it follows from (12) that L5

−2 = 0 in
H0/C2(H0). By the usual argument (see for example [1]), one can then show that

L5
0 + (terms of conformal weight < 10) = 0 (14)

in Zhu’s algebra. The terms of lower conformal weight can again be expressed in terms of
the basis vectors of (12), as well as elements in C2(H0). Since all vectors that appear in (14)
are su(2) singlets, only the basis vectors in the first line of (12) contribute. Continuing this
argument recursively, one then deduces that there is a fifth-order polynomial relation involving
only L0 in Zhu’s algebra, i.e. a relation of the form (13).

By the same token, it then also follows that the differential equation (3) that characterizes
the vacuum torus amplitudes for the triplet theory is (at most of) fifth order. Furthermore,
(6) must actually reduce to (13), and thus the differential equation is precisely fifth order.
Since the space of vacuum torus amplitudes is invariant under the action of the modular group
SL(2, Z) (see section 2), the differential equation must be modular invariant as well. The most
general modular invariant differential equation of degree 5 is[

D5 +
4∑

r=0

fr(q)Dr

]
T (q) = 0, (15)
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where each fr(q) is a polynomial in E4(q) and E6(q) of modular weight 10 − 2r , and

Di = cod(2i) · · · cod(2)cod(0), (16)

with cods being the modular covariant derivative on weight s modular functions

cod(s) = q
∂

∂q
− 1

12
(s − 2)E2(q), (17)

which increases the weight of a modular form by 2. Here E2 is the second Eisenstein series,
and cod(0)f = f . For the case of rational conformal field theories, this differential equation
was first considered in [45] (see also [55, 56] for further developments). It is often called the
modular differential equation.

The first few of Di read to first order in q, i.e. where E2(q) is only taken as 1 − 24q +
O(q2), and with the notation Dq = q ∂

∂q
, simply

D0 = 1,

D1 = Dq,

D2 = D2
q − 1

6Dq + q4Dq,

D3 = D3
q − 1

2D2
q + 1

18Dq + q
(
12D2

q + 4
3Dq

)
,

D4 = D4
q − D3

q + 11
36D2

q − 1
36Dq + q

(
24D3

q + 4
3D2

q + 4
3Dq

)
,

D5 = D5
q − 5

3D4
q + 35

36D3
q − 25

108D2
q + 1

54Dq + q
(
40D4

q − 20
3 D3

q + 20
3 D2

q

)
,

where all expressions are up to O(q2). Of course, D0 and D1 are exact to all orders.
The most general ansatz for the differential equation (15) is therefore

5∑
k=0

∑
r,s

4r+6s=10−2k

ar,s(E4)
r (E6)

s

(
k∏

m=0

cod(2m)

)
T (q) = 0. (18)

This differential equation must be satisfied by the characters of the irreducible highest weight
representations of the triplet algebra. As we have explained before, there are four irreducible
highest weight representations with conformal weights h = 0,−1/8, 3/8 and h = 1, and their
corresponding characters are known [12, 13, 43]. In terms of the functions

η(q) = q1/24
∞∏

n=1

(1 − qn), (19)

θλ,k(q) =
∑
n∈Z

q
(2kn+λ)2

4k , (20)

as well as

(∂θ)λ,k(q) =
∑
n∈Z

(2kn + λ)q
(2kn+λ)2

4k , (21)

they are given as

χ− 1
8
(q) = θ0,2(q)/η(q), (22)

χ0(q) = 1
2 (θ1,2(q) + (∂θ)1,2(q))/η(q), (23)

χ 3
8
(q) = θ2,2(q)/η(q), (24)

χ1(q) = 1
2 (θ1,2(q) − (∂θ)1,2(q))/η(q). (25)
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Putting these pieces of information together, we find that (up to an overall normalization
constant) (18) is uniquely determined to be the differential equation

0 =
[

143

995 328
E4(q)E6(q) +

121

82 944
(E4(q))2cod(2) +

65

2304
E6(q)cod(4)cod(2)

− 163

576
E4(q)cod(6)cod(4)cod(2) + cod(10)cod(8)cod(6)cod(4)cod(2)

]
T (q).

It is instructive to look at the leading order of the above equation. If we expand the Eisenstein
series En = 1 + gn,1q + O(q2) with gn,1 given by g2,1 = −24, g4,1 = 240, g6,1 = −504, we
obtain

0 =
(

D5
q − 5

3
D4

q +
397

576
D3

q − 427

6912
D2

q − 37

82 944
Dq +

143

995 328

)
T (q)

+ q

(
40D4

q − 895

12
D3

q +
2209

96
D2

q − 209

216
Dq − 1573

41 472

)
T (q) + O(q2).

The zero-order term in q can be factorized as

1

995 328
(24Dq − 11)(12Dq − 13)(24Dq + 1)(12Dq − 1)2. (26)

Recalling that Dq has to be replaced by L0 − c
24 = L0 + 1

12 in order to relate (3) to (6), this
therefore reduces, as required, to (13). If we make the ansatz

T (q) = qh+ 1
12 (1 + c1q + c2q

2 + c3q
3 + O(q4)), (27)

the above differential equation becomes, up to third order,

0 = qh+1/12

64
[q0(h2(h − 1)(8h + 1)(8h − 3))

+ q1(c1(h + 1)2h(8h + 9)(8h + 5) + 2h(32h − 45)(40h2 − 5h − 1))

+ q2(c2(h + 2)2(h + 1)(8h + 17)(8h + 13) + 2c1(32h − 13)(h + 1)(40h2 + 75h + 34)

+ 2(3840h4 + 2840h3 − 17 331h2 + 706h − 442))

+ q3(c3(h + 3)2(h + 2)(8h + 25)(8h + 21) + 2c2(h + 2)(32h + 19)(40h2 + 155h + 149)

+ 2c1(3840q4 + 18 200q3 + 14 229q2 − 10 076q − 10 387)

+ 4(2560h4 + 28 880h3 − 66 574h2 − 9772h − 12 281)) + O(q4)].

5. Solving the modular differential equation

As we have argued above, the modular differential equation is of fifth order for the triplet
theory, and the space of vacuum torus amplitudes is therefore five dimensional. On the other
hand, we have only got four irreducible representations that give rise, via their characters,
to four vacuum torus amplitudes (that solve the differential equation). Let us now analyse
how to obtain a fifth, linearly independent, vacuum torus amplitude. First let us try to find
a solution of the form (27). Because of the lowest order equation (26), this will only give
rise to a solution provided that h = − 1

8 , 3
8 , 0 or h = 1. For each fixed h, one then finds

that there is only one such solution, which therefore agrees with the corresponding character
of the irreducible representation (i.e. with (22)–(25)). By the way, this conclusion was not
automatic a priori, since there exist cases where the modular differential equation has two
linearly independent solutions with the same conformal weight, both of which are of power
series form. The simplest example is provided by the two h = 0 characters of the c = 1 − 24k

series of rational CFTs, k ∈ N, with extended symmetry algebra W(2, 8k). One of these
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solutions belongs to the vacuum representation, the other to a second h = 0 representation
(whose highest weight state has a non-zero W0 eigenvalue).

The character of any highest weight representation always gives rise to a torus amplitude
as in (27), and thus we have shown that the space of vacuum torus amplitudes for the triplet
theory is not spanned by the characters of the (irreducible) highest weight representations.
This was to be expected, given the analysis of [36].

It is not difficult to show that the missing, linearly independent solution can be taken
to be

T5(q) = log(q)(∂θ)1,2(q)/η(q). (28)

It is tempting to associate this vacuum torus amplitude with the logarithmic (indecomposable)
highest weight representation R0 whose ground-state conformal weight is h = 0, and this
is indeed what was suggested in [43]. However, strictly speaking, this identification is only
formal since T5(q) is not canonically determined by the above analysis. In particular, we could
have equally replaced T5(q) by T ′

5(q) = T5(q) + α0χ0(q) + α1χ1(q) for any (real) αi, i = 1, 2.
It is therefore not clear which choice of αi should (formally) describe the character of the
logarithmic representation R0. (It is also clear that the conventional character of R0 is in fact
just

χR0
(q) = χ0(q) + χ1(q) = θ1,2(q)/η(q), (29)

and therefore does not account for the additional solution. The same is also true for the
other indecomposable representation R1.) The additional logarithmic solution will appear in
the description of the full torus amplitudes of the theory (see for example [58]). Indeed, for
logarithmic theories the full vacuum torus amplitude is in general not just the partition function,
but is built from the chiral torus amplitudes that were discussed above. The logarithmic solution
also appears in a complete description of the boundary CFT [48].

One important consequence of this analysis is that the space of torus amplitudes does not
have a canonical basis. This is unlike the case of a rational conformal field theory where the
canonical basis for the space of vacuum torus amplitudes is given in terms of the characters
of the irreducible representations. This canonical basis plays a crucial role in the Verlinde
formula, where the matrix elements of the modular S-matrix with respect to this basis enter.
It is therefore not surprising that the Verlinde formula does not work for this logarithmic
conformal field theory: as was shown in [7], the fusion rules of the triplet theory cannot be
diagonalized, and thus no Verlinde formula can exist.

Finally, we note that the solution T5(q) is in fact a torus amplitude in a slightly different
sense. As we have seen above, T5(q) is proportional to τη2(q) and thus, up to the Liouville
factor, proportional to one of the periods of the torus. Following an approach of Knizhnik
[57], one can show that this torus amplitude is precisely one of the two conformal blocks one
finds for the four-point function 〈µµµµ〉 of the h = −1/8 field on the plane, provided we
express it in terms of τ instead of the crossing ratio x with the help of the elliptic modulus
κ2(τ ) = x, see [58]. Actually, this four-point function gives the complex plane the geometry
of a double covering with two branch cuts, i.e. of a torus.

6. A general analysis

For any (logarithmic) conformal field theory which satisfies the C2 condition, the mere
existence of a finite-order differential equation allows us to derive some relations and bounds
for the highest weights. As argued above, the torus amplitudes of such a theory have to satisfy
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an nth-order holomorphic modular invariant differential equation of the form (15),[
Dn +

n−1∑
r=0

fr(q)Dr

]
T (q) = 0, (30)

where fr(q) ∈ C[E4, E6] are modular functions of weight 2(n−r). These coefficient functions
may be expressed in terms of a set of n linearly independent solutions T1(q), . . . , Tn(q) of the
differential equation (30). However, in contrast to [45], these solutions cannot in general be
identified with the characters of representations. In particular, we cannot assume that Ti(q)

have a good power series expansion in q up to a common fractional power hi − c/24mod1.4

Instead, we want to assume that they lie in C((q))[τ ], i.e. that they are power series in q times
a polynomial in τ ≡ 1

2π i log(q). This is certainly the case for the triplet theory discussed
before.

With this in mind, we can adapt the analysis of [45] to this more general setting. The main
difference will be that we shall not assume in the following that the highest weights are all
different, hi �= hj for i �= j , but only that Ti(q) �= Tj (q) for i �= j . Note that the asymptotic
behaviour of two functions Ti(q) and Tj (q) in the limit q → 0 (or τ → +i∞) is the same
whenever Tj (q) = p(τ)Ti(q) for a polynomial p, provided Ti(q) ∼ qα with α �= 0. The case
α = 0 occurs precisely when hi − c/24 = 0. We note that all known logarithmic conformal
field theories, except for c = 0, do not have any logarithmic representations with h = c/24.

As in [45], we now express the coefficients of the modular differential equation in terms
of the Wronskian of a set of n linearly independent solutions as

fr(q) = (−1)n−rWr(q)/Wn(q), (31)

Wr(q) = det




T1(q) . . . Tn(q)

D1T1(q) . . . D1Tn(q)

...
...

Dr−1T1(q) . . . Dr−1Tn(q)

Dr+1T1(q) . . . Dr+1Tn(q)

...
...

DnT1(q) . . . DnTn(q)




. (32)

The torus amplitudes, considered as functions in τ , are non-singular in H. As a consequence,
the same applies for Wr . Therefore, the coefficients fr can have singularities only at the zeros
of Wn. We will now show that the total number of zeros of Wn can be expressed in terms of
the number n of linearly independent torus amplitudes, the central charge c and the conformal
weights hi associated with the torus amplitudes Ti(q). In order to do so, we note that in
τ → +i∞ limit, the torus amplitudes behave as exp

(
2π i

(
hi − c

24

)
τ
)
. With the above caveat

concerning the case h = c/24, this applies to all torus amplitudes independently of whether
they are pure power series in q, or whether they have a τ -polynomial as an additional factor.
This implies that Wn ∼ exp

(
2π i

( ∑
i hi − n c

24

)
τ
)
, which says that Wn has a pole of order

n c
24 − ∑

i hi at τ = i∞. Now, Wn involves precisely 1
2n(n − 1) derivatives meaning that it

transforms as a modular form of weight n(n− 1). Both facts together allow us to compute the
total number of zeros of Wn, which is

1

6
� ≡ −

n∑
i=1

hi +
1

24
nc +

1

12
n(n − 1) � 0, � ∈ Z+ − {1}. (33)

4 We will in the following always speak of power series expansions in q with the silent understanding that a common
fractional power is allowed, i.e. that the functions can be expanded as T (q) = qα

∑∞
k=0 akq

k, α ∈ Q.
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This number cannot be negative since Wn must not have a pole in the interior of moduli space.
We note that (33) is always a multiple of 1

6 since Wn, as a single-valued function in Teichmüller
space, may have zeros at the ramification points exp

(
1
3π i

)
and exp

(
1
2π i

)
of orders 1

3 and 1
2 ,

respectively. Equation (33) provides a simple bound on the sum of the conformal weights.
For example, for the case of the c = −2 triplet theory, we have

− [(− 1
8

)
+ (0) + (0) +

(
3
8

)
+ (1)

]
+ 1

24 (5)(−2) + 1
12 (5)(4) = 0, (34)

in agreement with the above analysis.

7. The other triplet theories

The analysis presented so far can in principle be generalized to all members of the cp,1

series of triplet models. In practice, however, we have not found it possible to give uniform
explicit expressions. The pattern which emerges in the treatment of the c = −2 case, i.e.
the case p = 2, however, seems to be of a generic nature. Indeed, all the cp,1 models are
C2-cofinite [53] and the characters of their irreducible representations are all known. They
close under modular transformations provided that a certain number of ‘logarithmic vacuum
torus amplitudes’ (the analogues of T5(q)) are added to the set. In fact, the characters of
the irreducible representation, together with additional torus amplitudes which we may again
associate with the indecomposable representations, read [43]

χ0,p(q) = 1

η(q)
�0,p(q), (35)

χp,p(q) = 1

η(q)
�p,p(q), (36)

χ+
λ,p(q) = 1

pη(q)
[(p − λ)�λ,p(q) + (∂�)λ,p(q)], (37)

χ−
λ,p(q) = 1

pη(q)
[λ�λ,p(q) − (∂�)λ,p(q)], (38)

χ̃λ,p(q) = 1

η(q)
[2�λ,p(q) − iα log(q)(∂�)λ,p(q)], (39)

where 0 < λ < p and where we made use of definitions (19)–(21). As before, the ‘logarithmic’
torus amplitudes χ̃λ,p are not uniquely determined by these considerations since α is a free
constant; the form given above is convenient for constructing modular invariant partition
functions. One should note, however, that for logarithmic conformal field theories the complete
space of states of the full non-chiral theory is not simply the direct sum of tensor products of
chiral representations (see for example [59]).

The congruence subgroup for the cp,1 model is �(2p). There are 2p characters
corresponding to irreducible representations, and (p−1) ‘logarithmic’ torus amplitudes, giving
rise to a (3p−1)-dimensional representation of the modular group. In particular, we therefore
expect that the order of the modular differential equation is (3p − 1). Furthermore, we expect
that the dimension of Zhu’s algebra is 6p−1: it follows from the structure of the above vacuum
torus amplitudes that p of the irreducible representations have a one-dimensional ground-state
space, while the other p irreducible representations have ground-state multiplicity 2; as above,
one may furthermore expect that each of the (p − 1) logarithmic representations probably
leads to one additional state, thus giving altogether the dimension p + 4p + (p − 1) = 6p − 1.
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While we have not managed to write down a general expression for the modular differential
equation for all p, we can give support for these conjectures by analysing the p = 3 triplet
model with c = −7. The vacuum character of this theory is χ+

2,3(q). Under the assumption
that the modular differential equation is in fact of order 3p − 1 = 8, we can determine it
uniquely by requiring it to be solved by this vacuum character. Explicitly, we find

0 =
[(

833

53 747 712
E4(q)(E6(q))2 − 990 437

36 691 771 392
(E4(q))4

)

− 40 091

143 327 232
(E4(q))2E6(q)cod(2)

+

(
115

746 496
(E6(q))2 +

53 467

47 775 744
(E4(q))3

)
cod(4)cod(2)

− 5897

124 416
E4(q)E6(q)cod(6)cod(4)cod(2)

+
10 889

55 296
(E4(q))2cod(8)cod(6)cod(4)cod(2)

+
157

432
E6(q)cod(10)cod(8)cod(6)cod(4)cod(2)

− 21

16
E4(q)cod(12)cod(10)cod(8)cod(6)cod(4)cod(2)

+ cod(16)cod(14)cod(12)cod(10)cod(8)cod(6)cod(4)cod(2)

]
T (q). (40)

If we make the ansatz that T (q) is of the form

T (q) = qh− c
24

∞∑
n=0

1∑
k=0

ck,nτ
kqm, (41)

we obtain, to lowest order, the polynomial condition

0 = 1

2304
(1 + 4h)2h2(h − 1)(12h − 5)(3h + 1)(4h − 7)(c1,0τ + c0,0)

+
1

1152
(1 + 4h)h(2304h5 − 5280h4 + 2160h3 + 870h2 − 229h − 35)c1,0 + O(q). (42)

As expected, we can read off from this expression the allowed conformal weights: if the
character does not involve any powers of τ (c1,0 = 0), then h needs to be from the set
h ∈ {0,−1/4, 1, 5/12,−1/3, 7/4}. Furthermore, we have two ‘logarithmic’ torus amplitudes
with h = 0 and h = −1/4. This then fits nicely together with the fact that there are in fact
two indecomposable highest weight representations with these conformal weights [60].
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